H&E

北京慧德易科技有限责任公司

地址:北京市回龙观西大街118号龙冠置业大厦609室 电话:010-59812370/1/2/3 传真:010-59812400

网址: www.prep-hplc.com

Ni 6FF (TED)使用说明书

为确保产品的性能和无忧的操作,使用前请仔细阅读本手册,有任何疑问请咨询本公司售后技术支持或当地的销售人员。

1. 产品介绍

Ni 6FF (TED)是利用 Ni²⁺与蛋白质侧链上的某些氨基酸(主要为组氨酸、半胱氨酸、色氨酸)相互作用而进行分离纯化,适用于 His 标签蛋白及与 Ni²⁺具有相互作用的生物分子的分离纯化。强结合的 Ni²⁺可以直接用于真核表达系统分泌表达的 His 标签蛋白且耐受更高的还原剂、螯合剂,无需进行样品前处理;介质的清洗再生工作简单,无需脱镍直接进行 NaOH 清洗。特点如下:

- a. 快速、简单(一步纯化)。
- b. 耐受更高的还原剂、螯合剂, 真核分泌表达的 His 标签蛋白无需前处理即可上样, 最大限度的保护蛋白活性。
- c. 无需脱镍直接进行 NaOH 清洗,大大缩短了清洗周期。
- d. 镍脱落比传统 Ni 6FF (IDA) 和 Ni 6FF (IMAC) 更低,无需反复再生。

基质 高度交联 6%的琼脂糖 粒径范围 45-165 µm 平均粒径 90 µm 20mg(His 标签蛋白)/ml(介质) 结合载量 3-12 (工作) 2-14 (清洗) pH 稳定性 0.01M 盐酸、0.01M 氢氧化钠(一周) 20mM EDTA、10mM DTT、1M 氢氧化钠、8M 尿素、6M 盐酸胍(24 小时) 化学稳定性 100mM EDTA、0.5M 咪唑 (2 小时) 30% 异丙醇 (20分钟) 兼容性 所有在 Ni 6FF (IMAC) 中正常使用的溶液 流速 600cm/h 操作压力 ≤0.3MPa

20% 乙醇

4-30°C

表1: 介质性能参数

2. 使用(以 HT 1ml 和 HT 5ml 为例)

a. 水洗

贮存溶液

贮存温度

用 5-10CV 纯化水以 0.5ml/min(HT 1ml)或 2.0ml/min(HT 5ml)清洗介质。 备注: 此步骤用于去除介质中 20% 乙醇。

b. 平衡

北京慧德易科技有限责任公司 北京市回龙观西大街 118 号龙冠置业大厦 609 室 102206 电话 010-59812370/71/72/73 传真 010-59812400

地址: 北京市回龙观西大街118号龙冠置业大厦609室 电话: 010-59812370/1/2/3 传真: 010-59812400

网址: www.prep-hplc.com

用 5-10CV 平衡液以 0.5ml/min(HT 1ml)或 2.0ml/min(HT 5ml)平衡介质,直至基线平稳后调零。

备注: 此步骤用于平衡介质,保证介质中的溶液的组分和 pH 与样本一致。

c. 上样

样品经过离心、过滤(0.45um)后以 0.2ml/min(1ml)或 1.0ml/min(5ml)进行上样,上样完成后用平衡液清洗直至基线为零。

备注:蛋白的结合能力随着裂解物类型、目标蛋白性质、流速、pH 变化而变化,低流速常常能增加样本的结合效率。

d. 洗杂

用 5-10CV 洗杂液以 0.5ml/min(HT 1ml)或 2.0ml/min(HT 5ml)洗杂,并收集洗杂液。 备注:洗杂液用于清洗一些非特异吸附的杂质蛋白。

e. 洗脱

用 5-10CV 洗脱液以 0.5ml/min(1ml)或 2.0ml/min(5ml)进行洗脱,并收集洗脱液。 备注:低流速常常能增加洗脱液中目标蛋白的浓度。

f. 水洗

用 5-10CV 纯化水以 0.5ml/min(1ml)或 2.0ml/min(5ml)清洗介质。

备注: 此步骤用于去除介质中洗脱液。

g. 保存

用 5-10CV 20% 乙醇以 0.5ml/min(1ml)或 2.0ml/min(5ml)清洗介质后保存。

备注: 20%乙醇可以防止微生物的生长,20%乙醇保存的介质可以在4-30℃(4-8℃更佳)保存。 h. 溶液配制(如果是包涵体纯化,在下述平衡液、洗杂液、洗脱液中添加8M尿素或6M盐酸 胍)

平衡液: 0.02M PB、0.5M NaCl,调节 pH 7.4,室温保存。

备注: 平衡液中 NaCl 是为了抑制介质的离子交换作用。

洗杂液: 0.02M PB、0.5M NaCl、0.005-0.01M 咪唑,调节 pH 7.4,室温保存。

备注:根据最终使用需求:非变性样品纯化时,在洗杂液中加入 0.005-0.01M 咪唑(优先考虑回收率)或者直接在平衡液中加入 0.005-0.01M 咪唑(优先考虑纯度);变性样品纯化时,平衡液中建议不可加入 0.005-0.01M 咪唑,否则结合强度、载量均会有一定的下降。

洗脱液: 0.02M PB、0.5M NaCl、0.5M 咪唑 , 调节 pH 7.4, 室温保存。

备注:一般情况下,洗脱液中咪唑浓度在 0.02-0.10M 即可洗脱下目标蛋白。

3.清洗

清洗后可以去除一些强结合性物质(例如一些强结合的蛋白、变性蛋白、脂类等),从而达到恢复介质的优良性能(例如载量、流动性、柱效等)。

建议每使用 5-10 次后进行一次清洗,具体清洗频率需根据纯化的初始样品的洁净度进行调整。

a. 用 5-10 倍柱体积纯化水冲洗。

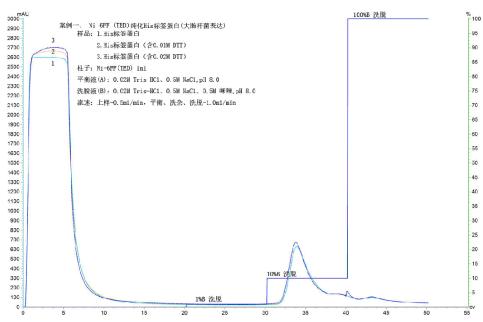
备注:用于去除洗脱液(使用后直接清洗)或20%乙醇(使用前清洗)。

b. 用 5-10 倍柱体积 1M NaOH 后静置 0.5-1 小时, 再用 10-20 倍柱体积纯化水冲洗直至 pH 至中性

北京慧德易科技有限责任公司 北京市回龙观西大街 118 号龙冠置业大厦 609 室 102206 电话 010-59812370/71/72/73 传真 010-59812400

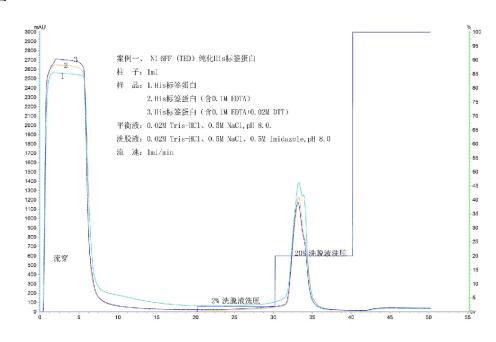
地址:北京市回龙观西大街118号龙冠置业大厦609室 电话:010-59812370/1/2/3 传真:010-59812400

网址: www.prep-hplc.com


备注:用于去除聚集在介质中的沉淀蛋白或疏水性结合蛋白或脂蛋白等。

c. 用 5-10 倍柱体积的 20% 乙醇冲洗后保存。

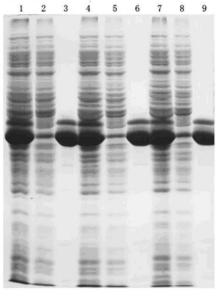
备注: 20%乙醇可以防止微生物的生长,20%乙醇保存的介质可以在4-30℃(4-8℃更佳)保存。


4. 应用案例

案例一

备注:由案例一可知:≤0.02M DTT 对纯化结果无影响。

案例二

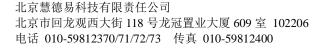


地址: 北京市回龙观西大街118号龙冠置业大厦609室 电话: 010-59812370/1/2/3 传真: 010-59812400

网址: www.prep-hplc.com

案例二、 Ni 6FF (TED) 纯化His标签蛋白

- 1:原液(标签蛋白+0.1M EDTA)
- 2:流穿(标签蛋白+0.1M EDTA)
- 3:洗脱(标签蛋白+0.1M EDTA)
- 4:原液(标签蛋白+0.1M EDTA+0.01M DTT)
- 5:流穿(标签蛋白+0.1M EDTA+0.01M DTT)
- 6:洗脱(标签蛋白+0.1M EDTA+0.01M DTT)
- 7: 原液(标签蛋白)
- 8:流穿(标签蛋白)
- 9:洗脱(标签蛋白)



备注:由案例二可知: 0.1M EDTA 或 0.01M DTT 对纯化结果几乎无影响。

5. 常见问题

表2: 常见问题及解决方案

问题	可能原因	解决方案
纯化时目标物不与介质结合 或结合量较低	1.上样量过载	降低上样量
	2.上样速度过快	降低上样流速
	3.蛋白或脂类在介质中聚集影响结合	及时有效地清洗介质或更换新的介质
	4.表达条件过于剧烈,His标签被包裹,	建议做一个空载体作为表达和纯化的
	不能与介质结合	对照,确定表达条件是否合适
	5.初始样品中没有组氨酸标签蛋白	通过基因序列或His标签抗体核实
	6.目标蛋白出现在流穿中	目标蛋白没有成功表达或样品和平衡
		液中pH和组分不正确
洗脱时没有收集到目标物 或只收集到少量目标物	1.目标物没有与介质结合或结合量较少	先确认目标物是否与介质结合
	2.洗脱条件不合适	加大洗脱液中咪唑浓度
	3.洗脱时间不够	降低流速,延长洗脱液的保留时间
	4.洗脱体积过小	加大洗脱体积
	5.洗脱液中洗脱能力太弱	加大洗脱液中咪唑浓度
	6.洗杂时,目的蛋白被洗下来	降低洗杂液中的咪唑浓度
	7.目标物在洗脱液条件下出现聚集沉淀	检测目标物在洗脱液条件(pH和盐浓
		度)下的溶解度和稳定性。可以尝试
		在洗脱液中加入一些添加剂: 如
		0.2%Triton X-100或0.5% Tween 20
目标物纯度较低	1.样品没有经过前处理	样品上柱前必须要经过离心或过滤

地址: 北京市回龙观西大街118号龙冠置业大厦609室 电话: 010-59812370/1/2/3 传真: 010-59812400

网址: www.prep-hplc.com

High quality & Expert	F-12E. www.bich ubic.com	
	2.样品粘度过高	用平衡液适当的稀释样品,降低粘度。
	3.洗杂不彻底	加大洗杂体积直至基线平稳并与平衡 液一致
	4.杂质蛋白或脂类在介质中聚集沉淀	及时有效地清洗介质
	5.杂质与Ni ²⁺ 具有较高的亲和力。	用其它类型介质进行纯化(如离子或 分子筛)
	6.目标物出现降解	检测目标物的稳定性并加入蛋白酶抑 制剂
	7.柱料装填效果不佳	重新装填或购买
		适当选择添加剂降低非特异性吸附,
	8.杂质与介质出现非特异性吸附	可以尝试在样品中加入一些添加剂:
	6. 示灰	如0.5%Triton X-100、1.0% Tween 20
		或50%甘油
	9.分离柱顶部有较大储样体积	重新装柱或降低储样体积
	10.介质中有微生物生长	介质使用完后,请及时正确保存介质
	1.上样速度过快	降低上样流速
介质载量下降	2.蛋白或脂类在介质中聚集,导致载量下降。	及时清洗介质
	3.使用次数过多	更换新介质
	4.表达条件过于剧烈,His标签被包裹,	建议做一个空载体作为表达和纯化的
	不能较好与介质结合	对照,确定表达条件是否合适
色谱峰上升缓慢	介质装填过紧	重新装柱
色谱峰拖尾	介质装填太松	重新装柱
柱床有裂缝或干涸	出现泄露或大体积气泡引入	检查管路是否有泄露或气泡,重新装 柱
液流较慢	1.蛋白或脂类聚集	及时清洗介质或滤膜
	2.蛋白沉淀在介质中	调整平衡液和洗脱液组分,以维持目 标物的稳定性和介质的结合效率
	3.分离柱中微生物生长	所用试剂必须经过过滤和脱气; 样品上柱前必须离心或过滤
<u> </u>	•	i .

6.订购信息

表3: 订购信息表

产品	规格(ml)	货号
Ni 6FF (TED)	25	HZ1003-8
Ni 6FF (TED)	100	HZ1003-8
Ni 6FF (TED)	500	HZ1003-8
Ni 6FF (TED)	1000	HZ1003-8

